GlobalHAB symposium on automated in situ observations of plankton Fiskebäckskil, Sweden 22-27 August 2022

INTRODUCTION TO AUTOMATED HAB OBSERVATIONS

Bengt Karlson Oceanographic Research Unit Swedish Meteorological and Hydrological Institute Gothenburg, Sweden

A plethophora of methods

SMHI

- Satellite remote sensing of ocean colour
- Absorbance from photosynthetic pigments
 - Single or multiple wavelengths
 - Hyperspectral
- In vivo fluorescence of pigments
 - Chlorophyll
 - Phycocyanin
 - Phycoerythrin
 - Multi-wavelength
- Flow cytometry
- Imaging in flow systems
- Molecular methods

Why automated imaging systems?

Some advantages

- Data in near time early warning of Harmful Algae Events possible
- Lower cost per sample compared to manual sampling and microscopy?
 At least if many samples are analysed
- Expert trained
 - Standardised output
- Fast sample throughput if there are morphological features that disting gushes the HAB organisms from other plankton

Some disadvantages

- Based on morphological features
 - Small cells often not possible to identify

Some approaches

Instruments

FlowCam

CytoSense

Imaging FlowCytobot

PlanktoScope (IOW)

Data flow and production of classifiers

Articles that may be of interest

Campbell, L., Henrichs, D.W., Olson, R.J., Sosik, H.M., 2013. Continuous automated imaging-in-flow cytometry for detection and early warning of Karenia brevis blooms in the Gulf of Mexico. Environmental Science and Pollution Research 20(10), 6896-6902.

Kraft, K., Seppälä, J., Hällfors, H., Suikkanen, S., Ylöstalo, P., Anglès, S., Kielosto, S., Kuosa, H., Laakso, L., Honkanen, M., Lehtinen, S., Oja, J., Tamminen, T., 2021. First Application of IFCB High-Frequency Imaging-in-Flow Cytometry to Investigate Bloom-Forming Filamentous Cyanobacteria in the Baltic Sea. Frontiers in Marine Science 8(282).

Kudela, R.M., Anderson, C., Ruhl, H., 2021. The California Harmful Algal Bloom Monitoring and Alert Program: A Success Story for Coordinated Ocean Observing. OCEANOGRAPHY 34(4), 84-85.

Olson, R.J., Sosik, H.M., 2007. A submersible imaging-in-flow instrument to analyze nano-and microplankton: Imaging FlowCytobot. Limnology and Oceanography-Methods 5, 195-203.

Sieracki, C.K., Sieracki, M.E., Yentsch, C.S., 1998. An imaging-in-flow system for automated analysis of marine microplankton. Marine Ecology Progress Series, 285-296.

Sosik, H.M., Olson, R.J., 2007. Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry. Limnology and Oceanography-Methods 5, 204-216.

Thyssen, M., Alvain, S., Lefèbvre, A., Dessailly, D., Rijkeboer, M., Guiselin, N., Creach, V., Artigas, L.-F., 2015. High-resolution analysis of a North Sea phytoplankton community structure based on in situ flow cytometry observations and potential implication for remote sensing. Biogeosciences 12(13), 4051-4066.